Artificial Dielectrics and Photonic Crystals for STAB Elements: the Receiver

STAB Kick-off Meeting August 8-9, 2000

F. Xu, C.-H. Tsai, W. Nakagawa, R.-C. Tyan, P.-C. Sun and Y. Fainman University of California, San Diego

Motivation: Laser communications for future information-rich battlefield environments

Key Element:

Efficient, compact/light weight, low cost, standardized, manufacturable, and robust *receiver structures*

Outline

- Motivation
- Approach: near-field phenomena in resonant nanostructures
 - -Implementation with photonic crystals
 - -Advancement of design and modeling tools
 - -Development of nano-fabrication techniques
 - -Development of characterization methods and tools
- Background
- Research Plan
- Preliminary Study
 - -Wide field of view/narrowband receiver structure
 - -Optical field concentration in nanostructures
 - -Subwavelength inter-digital electrodes
 - -Research on the fabrication techniques
- Summary

Artificial Dielectric Optical Nanostructures

fabricated in collaboration with Prof. Axel Scherer, Caltech

Photonic Integrated Chips

Features and Advantages of the Artificial Dielectric Receiver Structures

Large Field of View and Narrow-band Color Selectivity

- structures intrinsically exhibit sharp frequency resonance in broad reflection band

Design Flexibility

- easily adapt to a variety of constituent materials and performance objectives

High Detection Efficiency and Gain

- resonant cavities
- optical field concentrations
- subwavelength electrode separation

• Fast Time Response

- subwavelength detection elements -> small total capacitances

• Single Chip Solution

- compatible with VLSI fabrication technology (materials and process)

Nanophotonics: Approach

Near-field Resonant Nanostructure: Polarization-Selective Beam Splitter (PBS)

Multilayer Reflectivity

Form Birefringence

Device Modeling

Each polarization sees a different multilayer structure

Estimated by 2nd Order Effective Medium Theory for wavelength = $1.5 \mu m$

Design, Fabrication & Characterization

Visualization of Ultrashort Pulse Propagation in Nanostructured PBS

2-D Polarization-Selective Photonic Crystal

Design parameters

$$d_{H} = f_{x}\Lambda_{x} \qquad \sqrt{\varepsilon_{1}}f_{x}\Lambda_{x} = \sqrt{\varepsilon_{2}}(1 - f_{x})\Lambda_{x} = \lambda/4$$

$$d_{L} = (1 - f_{x})\Lambda_{x} \qquad \sqrt{\varepsilon_{0}}(1 - f_{y})\Lambda_{y} = \sqrt{\varepsilon_{3}}f_{y}\Lambda_{y} = \lambda/4$$

$$\varepsilon_{0} = 1.00$$
 $\varepsilon_{1} = 5.99$
 $\varepsilon_{2} = 1.32$
 $\varepsilon_{3} = 6.88$

$$\Lambda_y = 0.52 G \mu m$$

Large frequency bandgap

Large angular range where TE reflects, TM propagates

Calculated by Rigorous coupled-wave analysis